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1. Introduction

Over the past decade, black hole thermodynamics has emerged as a crucial theoretical

laboratory to test issues of quantum gravity in the context of string theories. The area

has witnessed major advances especially toward a resolution of the microscopic statistical

basis underlying the macroscopic entropy of extremal and near extremal black holes in

string theory [1]. Macroscopically black holes are known to be thermodynamic systems

with a characteristic Hawking temperature and an entropy, which, upto leading order, is

proportional to the area of the event horizon in Planck units [2]. The entropy is a function

of the mass (internal energy) M , charge Q and the angular momentum J for the most

general charged rotating black holes. These serve as extensive thermodynamic variables

provided we consider the black hole to be a subsystem of a larger thermodynamic system

with which it is in equilibrium.

A large class of extremal BPS black holes occur in the low energy supergravity theories

arising from string theory. In particular the entropy of extremal black holes in supergravity

theories with N ≥ 2 are known to posses an underlying microscopic statistical description
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in terms of D-brane systems or fundamental string states. Although such extremal black

holes have zero Hawking temperature, they have a non zero thermodynamic entropy and

are described by degenerate quantum ground states. A microscopic state counting in

the associated conformal field theory then reproduces the thermodynamic entropy as an

asymptotic expansion in the large charge limit. The low energy effective action of N ≥ 2

supergravity following from type II string compactifications also involve higher derivative

terms in an α′ expansion. These terms modify the Bekenstein Hawking area law and

introduces subleading corrections to the entropy. These corrections may be computed

from the Wald formulation of generally covariant higher derivative theories of gravity [2].

It has been possible in the recent past to account for these subleading corrections from

a microscopic perspective following from the underlying string theory. Exact matching

between the macroscopic and microscopic entropy upto various subleading orders in an

asymptotic expansion have been obtained for diverse extremal black holes [3].1

On the other hand, thermodynamic systems in equilibrium are known to possess in-

teresting extrinsic geometrical features [4] although intrinsic geometric structures in equi-

librium thermodynamics were largely unknown. An equilibrium state space of a thermo-

dynamic system may be considered to be described by the minima of the internal energy

function U = U (S/T, V/T, µi/T ) in the energy representation or the maxima of the en-

tropy S = S (U, V,Ni) in the entropy representation. Here the quantities (µi, T, V,Ni) are

the chemical potentials, temperature, volume and particle number per species respectively.

Weinhold [5] introduced an inner product in this thermodynamic state space in the energy

representation as the Hessian matrix of the internal energy with respect to the extensive

variables leading to an intrinsic positive definite Riemannian geometric structure. One of

the extensive parameters, typically the volume, was held fixed to provide a physical scale

and prevent the development of negative eigenvectors of the metric. Although interest-

ing, the physical relevance of this structure seemed elusive. Ruppeiner [6] reformulated

the Weinhold inner product in the entropy representation in terms of the (negative of the)

Hessian matrix of the entropy with respect to the extensive thermodynamic variables. This

also led to a positive definite Riemannian geometric structure in the thermodynamic state

space which was conformally related to the Weinhold geometry, with the temperature as

the conformal factor. Ruppeiner showed that consideration of thermodynamic fluctuation

theory [7] in addition to the thermodynamic laws allowed a remarkable physical interpreta-

tion of this geometric structure in terms of the probability distribution of the fluctuations

and a relation of the scalar curvature with critical phenomena.

Thermodynamic geometry of the equilibrium state space described above may also

be applied to study black holes considered as thermodynamic systems. Recent studies

of the thermodynamics of diverse black holes in this geometric framework have elucidated

interesting aspects of phase transitions and relations to moduli spaces of N ≥ 2 supergravity

compactifications in the context of extremal black hole solutions in these theories. It

may be argued, however, that the connection of this formulation to fluctuation theory for

1There is a huge amount of literature in the subject we give here some of the recent lectures which

summarizes the field.
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application to black holes requires several modifications [9]. The geometric formulation in

the thermodynamic state space was first applied to extremal black holes in D = 4, N ≥ 2

supergravity which arise as low energy effective field theories from compactification of

Type II string theories on Calabi-Yau manifolds [10]. A connection between the geometric

formulation and the moduli space metric for the appropriate Calabi-Yau manifold could be

established in this framework. Since then, several authors have attempted to understand

the thermodyamic geometry of non extremal black holes [11, 12] and five dimensional

rotating black rings. In this context, we had explored the state space geometry of both

non extremal rotating BTZ black holes and rotating BTZ-Chern Simons (BTZ-CS) black

holes in the Ruppeiner formulation [13].

The non zero entropy of extremal black holes and other such examples of degener-

ate quantum ground states indicates the possibility of a limiting characterization of con-

ventional theromdynamics to such systems at zero temperatures. It is then an issue of

importance to investigate whether the original domain of application of thermodynamic

geometries may also be extended to such degenerate quantum ground states. Although

such a possibility was alluded to in [10] there was no conclusive computation or elucidation

of the issues arising from such an extension. Clearly, notions of conventional thermodynam-

ics are not expected to be valid in this regime, and one would require modifications to the

same. The first and most fundamental question that one may address, however, is whether

a geometric characterization of the state space is at all possible at extremality. It is one of

the issues that we will address in this paper, and our conclusion is that this is indeed the

case. It should be emphasized that the issue of a non degenerate thermodynamic geometry

at extremality is not at all obvious as conventional thermodynamic notions are invalid. As

such, our results strongly suggest the possibility of a geometric characterization of black

hole thermodynamics even at zero temperature, which was not known earlier. In fact our

computations serve as the first examples of a geometric realization of the state space for

degenerate quantum ground states exemplified by zero temperature extremal black holes.

In this paper, we will focus our attention on the charged extremal BPS black holes in

Type II string theories compactified on Calabi-Yau manifolds. As is well known by now, the

radial variation of the moduli in these cases exhibit attractor behaviour as they flow from

their asymptotic values to an attractor fixed point at the horizon where they are fixed

in terms of the charges through the attractor ( stabilization) equations. The attractor

mechanism could be described in terms of an effective potential V (q, p, φ) which was a

function of the conserved charges and the scalar moduli and expressed in terms of certain

symplectic invariants of the N = 2 special geomtery. The critical points of this effective

potential at which its first derivative with respect to the moduli vanished were characterized

as the attractor fixed points at which the central charge of the N = 2 supersymmetry also

assumed its minimum value. At the attractor fixed point the macroscopic entropy was

given as Smacro = Ah

4 = πV (p, q, φa
h), where φa

h were the fixed point values of the moduli

and the entropy was purely a function of the charges alone. These BPS black hole solutions

(of N = 2 supergravity) fall in two distinct classes; namely the large black holes which have

a non vanishing area at the two derivative level and posses dyonic charges, and the small

black holes which have a vanishing area and carry electric charges only in a suitable duality
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basis. The large black holes may be described in terms of wrapped branes on non-trivial

cycles of the compact internal manifold. Their microscopic entropy is determined in terms

of the microstate counting through the Cardy formula in the underlying two dimensional

CFT associated with the brane system. This is in precise agreement upto the subleading

terms with the macroscopic entropy following from the Wald formula. The small black

holes are more complicated. They have a vanishing horizon area as the horizon coincides

with the null singularity and the curvature diverges. Hence higher curvature terms are

large and the singularity is cloaked by the effective horizon [3]. Although a lot of progress

has been made in understanding these systems, there are still certain unresolved issues.

The macroscopic entropy also follows directly from a variational principle applied to a

generic class of entropy functions of the charges and the moduli. The attractor equations

arise as a consequence of extremisation of this function with respect to the moduli and lead

to the attractor fixed point at the horizon. An alternative analysis due to Sen [15] involves

an adaptation of the Wald formalism to establish a more general variational technique to

compute the higher derivative corrections to the entropy of charged extremal black holes.

This formalism involves a more general class of entropy functions which are functions of

both the scalar moduli and the parameters which describe the near horizon AdS2 ×S(D−2)

geometry. Extremisation of this entropy function determines all the near horizon parame-

ters and it maybe shown that the entropy function at the attractor fixed point determines

the black hole entropy. Higher derivative contributions to the entropy may also be elegantly

implemented through this general entropy function formalism. Typically, the generalised

entropy function formalism is mostly independent of supersymmetry considerations and

has been also applied to extremal but non supersymmetric black holes [16].

As mentioned earlier the non zero entropy of extremal black holes which have zero

Hawking temperatures naturally alludes to a non trivial limiting characterisation of con-

ventional thermodynamics. This is further supported by the gauge-gravity correspondence

in which certain limiting thermodynamic notions emerge for describing extremal black

holes [17]. The entropy arises from macroscopic degeneracy of a quantum ground state

and is a familiar phenomena in the physics of condensed matter systems like spin glasses.

A thermodynamic interpretation of this macroscopic degeneracy for extremal black holes

may be formally attempted through the partition function in a grand canonical ensemble

involving summation over the chemical potentials. Although an exact evaluation of this

formal expression is difficult it maybe possible within the gauge gravity correspondence

to compute the sum in the boundary gauge theory [18]. An alternative approach to a

limiting zero temperature characterisation of thermodynamics also arises from the general

AdS-CFT correspondence [19, 20].

This naturally leads to the question of the possibility of a geometric characterisation

of the equilibrium thermodynamic state space of degenerate quantum ground states such

as extremal black holes. This is a reduced state space of equilibrium thermodynamic states

consistent with the extremality condition. For supersymmetric black holes this is simply

the BPS condition although the general arguments should also hold for non supersym-

metric extremal black holes. As geometric notions remain valid even when conventional

thermodynamics is invalid, a non degenerate geometric realization of the state space of
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extremal black holes should be possible within the framework of thermodynamic geome-

tries. In accordance with the first law of thermodynamics, the equilibrium state space for

these extremal black holes would now also involve the scalar moduli at asymptotic infinity

apart from the electric and the magnetic charges [22] as extensive thermodynamic variables.

This, in general, leads to a curved equilibrium thermodynamic state space.

Although conventional thermodynamic notions breakdown at extremality, the geomet-

ric features of the state space should continue to be valid and well defined. However, the

connection to thermodynamic fluctuations is elusive even for non extremal black holes [9]

and is certainly not expected to hold in the zero temperature extremal limit. In fact

its well known that classical fluctuations which have a thermal origin are absent at zero

temperatures. The scalar curvature on the other hand may still indicate interactions,

and divergences in the scalar curvature possibly allude to zero temperature quantum phase

transitions amongst distinct vacua in the moduli space. In particular a generalized thermo-

dynamic geometry of the equilibrium state space extended by the moduli variables should

lead to insights into thermodynamics away from the attractor fixed point. Such an analysis

should also provide an understanding of the attractor mechanism in terms of flows in the

space of thermodynamic geometries and a geometric comprehension of the attractor fixed

point.

As a first step toward this objective, it is necessary to explore the state space geometry

for extremal black holes at the attractor fixed point. In particular, it is important to ex-

plore whether thermodynamic metrics are non degenerate at extremality and to establish

the behavior of the scalar curvature. Such a construction would clearly elucidate the issue

of thermodynamics at extremality and provide a geometrical realization of the equilibrium

thermodynamic state space at zero temperatures. It would also be interesting to study

the effect of the higher derivative contributions to the state space geometry and the scalar

curvature. It is possible that the higher derivative corrections may induce a modification

of the divergences in the scalar curvature in the state space and consequently that of pos-

sible quantum phase structures. Small black holes in Type II supergravity which have zero

entropy at the two derivative level are particularly interesting in this connection as the ther-

modynamic geometry arises only from the higher derivative contributions to the entropy.

We emphasize here however that since we are considering a limiting characterization

of thermodynamics arising from the macroscopic degeneracy of a quantum ground state,

conventional thermodynamic notions will need to be modified. In particular the usual

relation of the geometry of equilibrium state space with thermodynamic fluctuations is

not expected to be valid at zero temperatures at which such fluctuations are absent. The

characterization of the probability distribution of thermodynamic fluctuations in terms of

an invariant positive definite Riemannian form over the equilibrium state space is thus

not expected to hold for extremal black holes. So although we see the emergence of a

non degenerate geometric structure of the state space through our construction, positive

definiteness of the Riemannian form is not a strict criterion. However, the usual notion

of thermodynamic stability in the canonical ensemble requiring the positivity of specific

heats or compressibilities are still expected to hold. In fact, the invariant Riemannian form

on the thermodynamic state space for such systems can be indefinite and may even be
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sensitive to the higher derivative corrections to the entropy. This issue may be understood

from the fact that the Weinhold geometry with respect to the scalar moduli given by the

Hessian of the ADM mass is proportional to the moduli space metric at the attractor fixed

point with the BPS mass being a proportionality constant [10]. For extremal black holes

which we consider the ADM mass is equal to the macroscopic entropy. Hence the sign of

the Hessian of the macroscopic entropy with respect to the conserved charges would clearly

depend on the signature of the moduli space metric.

In this paper, we examine the geometry of the equilibrium thermodynamic state spaces

of three different charged extremal black holes in Type II supergravity with 4 charges, 3

charges and 2 charged small black holes. These are described respectively by microscopic

D2-D6-NS5-P and D1-D5-P brane systems and Type IIB string theory compactified on

K3 × T 2. The paper is organised as follows. In the next section we provide a brief review

of thermodynamic geometries of the equilibrium state spaces of thermodynamic systems

and its relation to interactions and phase transitions both for two and higher dimensional

thermodynamic state spaces. In section 3, we explore the thermodynamic geometry of the

four charged extremal black hole arising from a microscopic configuration of D2-D6-NS5-P

brane system and further study the modification to the thermodynamic geometry from

higher derivative contributions to the entropy. In section 4, we investigate the state space

geometry of the three charged extremal black hole arising from a D1-D5-P system both

in D = 5 and D = 10 and also illustrate the effect of higher derivative contributions to

the entropy on the state space geometry and its curvature. In section 5, we take up the

interesting issue of two charged small black holes in Type IIB string theory compactified

on K3×T 2 and explore the thermodynamic geometry of the state space arising out of both

the macroscopic and the microscopic entropy expression resulting from a heterotic string

theory computation. We further consider the modification of the state space geometry

due to the higher derivative corrections to the entropy both from the low energy effective

action as well as string loop corrections. We also study the state space geometry and its

curvature implied by an exact entropy expression following from a quantum information

theory perspective. Section 6 concludes this paper with a summary of the results.

2. Review of thermodynamic geometry

In this section we present a brief review of the essential features of thermodynamic geome-

tries and their application to the thermodynamics of black holes, in particular extremal

black holes. This will serve to to set the notations and conventions used in the rest of

this paper. An intrinsically geometric structure in equilibrium thermodynamics was intro-

duced by Weinhold [5] through an inner product in the space of equilibrium thermodynamic

macrostates defined by the minima of the internal energy function U = U(S/T, V/T, µi/T )

as the Hessian

hij = ∂i∂jU (2.1)

As mentioned in the introduction, the quantities (µi, T, V, S) are the chemical potentials,

temperature, volume and entropy respectively and the volume or any other parameter is
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held fixed to provide a physical scale and to restrict negative eigenvectors of the metric.

Although such a Riemannian geometric structure was interesting, no physical significance

could be ascribed to it. The inner product on the state space was later reformulated by

Ruppeiner [6] in the entropy representation as the negative of the Hessian matrix of the

entropy with respect to the extensive variables. The thermodynamic macrostates underly-

ing the equilibrium state space being now described by the maxima of the entropy function

S = S(U, V,N). Explicitly the Ruppeiner metric in the state space was given as

gij = −∂i∂jS(U, V,N) (2.2)

and was conformal to the Weinhold metric with the inverse temperature as the conformal

factor. The negative sign was necessary to ensure positive definiteness of the metric, as the

entropy is a maximum in the equilibrium state. It could be shown that the Riemannian

structure defined by the Ruppeiner metric was closely related to classical thermodynamic

fluctuation theory [8] and critical phenomena. The probability distribution of thermody-

namic fluctuations in the equilibrium state space was characterised by the invariant interval

of the corresponding thermodynamic geometry in the Gaussian approximation as

W (x) = Aexp

[

−1

2
gij(x)dxidxj

]

(2.3)

where A is a constant. The inverse metric may be shown to be the second moment of

fluctuations or the pair correlation functions and given as gij =< XiXj > where Xi are

the intensive thermodynamic variables conjugate to xi. The Riemannian structure could

be expressed in terms of any suitable thermodynamic potential arrived at by Legendre

transforms which corresponds to general coordinate transformations of the equilibrium

state space metric. The geometric formulation tacitly involves a statistical basis in terms of

a canonical ensemble although the analysis was considered only in the thermodynamic limit.

For a standard two dimensional thermodynamic state space defined by the extensive

variables (x1, x2), application of these geometric notions to conventional thermodynamic

systems suggest that a non zero scalar curvature indicates an underlying interacting statis-

tical system. It may be shown that the scalar curvature R ∼ κ2ξ
d where ξ is the correlation

length, d is the physical dimensionality of the system and κ2 is a dimensionless constant of

order one. Hence the scalar curvature diverges at the critical points. The Ruppeiner for-

malism has been applied to diverse condensed matter systems with two dimensional state

spaces and is completely consistent with the scaling and hyperscaling relations involving

critical phenomena and have reproduced the corresponding critical indices.

Having provided a brief account of thermodynamic geometries, in the following sec-

tions we systematically explore the state space geometry in the Ruppeiner framework for

several charged extremal black holes in Type II string theories. Our constructions would

provide a geometric realization of a limiting equilibrium thermodynamics at zero tempera-

tures. This would be the first step to address the issue of the thermodynamics of extremal

black holes away from the attractor fixed point and a geometric characterization of the

attractor mechanism. It will also serve as a prelude to the application of the formalism
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of thermodynamic geometries to the study of zero temperature quantum phase transitions

amongst distinct vacua in the moduli space of string theory compactifications.

The application of this geometric formalism to non extremal black holes and the con-

sequent divergences of the scalar curvature at known critical points [12] indicates that a

non zero scalar curvature for state spaces of extremal black holes may also suggest an un-

derlying interacting statistical system. In this case, the divergences of the scalar curvature

may allude to zero temperature quantum phase transitions amongst distinct vacua in the

moduli space. The attractor mechanism for extremal black holes and the consequent flow

of the scalar moduli to fixed values at the horizon in terms of the charges also seems to

suggest such a connection of the state space scalar curvature with the structure of the

moduli space. It is this perspective that we will adopt in the present study and we explore

the scalar curvatures over the state space of extremal black holes and their sensitivity to

higher derivative corrections to the entropy. Following the arguments presented earlier we

will interpret the scalar curvature as indicative of an interacting microscopic statistical

system underlying extremal black holes at zero temperatures.

3. Four charged black holes in D2-D6-NS5-P system

In this section, as a first exercise, we study the thermodynamic geometry of four charged

extremal black holes in D = 4 and D = 10 in Type II A string theory compactified on

T 6 [23]. These are known to be described by microscopic D2-D6-NS5-P brane systems

which are 1
8 BPS configuration in Type IIA supergravity. The solitonic NS5 brane is

required for satisfying the tree level IIA supergravity equations of motion and this does

not affect the overall supersymmetry. From a microscopic perspective this is analogous to

exciting left moving oscillations on a fundamental heterotic string. The brane system in

question is T dual to the D1-D5-P system considered in the next section. The D2 branes

are sources for electric fields whilst the D6 and NS5 branes are sources of magnetic fields.

For the relevant expressions for the metrics in the various cases, see, e.g. [24].

3.1 Four charged black holes in D = 4

The macroscopic entropy at the tree level α′ resulting from the two derivative part of the

action is

S(N2, N5, N6, Np) = 2π
√

N2N5N6Np (3.1)

where, in the D-brane description, N2, N6 and N5 are identified with the number of D-2, D-

6 and NS-5 branes respectively, and Np with the number of units of Kaluza Klein momenta,

and are all assumed to be large. The equation is thus valid in the limit of large charges and

small curvature. The entropy is the standard Bekenstein-Hawking entropy given by the

area law. It is now possible to explore the thermodynamic geometry of the equilibrium state

space of the 4 charged extremal black hole in D = 4 arising from this entropy expression.

The Ruppeiner metric in the state space is given by the Hessian matrix of the entropy with

respect to the extensive variables which in this case are the four conserved charges carried
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by the extremal black hole. A straightforward computation yields

ds2 =
π

2

(

√

N5N6Np

N2

dN2
2

N2
+

√

N2N6Np

N5

dN2
5

N5
+

√

N2N5Np

N6

dN2
6

N6
+

√

N2N5N6

Np

dN2
p

Np

)

−π

(

√

N6Np

N2N5
dN2dN5 +

√

N5NP

N2N6
dN2dN6 +

√

N5N6

N2Np
dN2dNp

+

√

N2Np

N5N6
dN5dN6 +

√

N2N6

N5Np
dN5dNp +

√

N2N5

N6Np
dN6dNp

)

(3.2)

The determinant of the metric tensor is g = −π4 which is a constant and hence we have

a non degenerate metric for the thermodynamic state space at extremality. Note that the

determinant is of negative sign, implying that the metric is not positive definite. As we

have emphasized that in the case of extremal black holes being considered, the connection

between the positivity of the thermodynamic metric and classical fluctuations of a thermal

origin is invalid, as such fluctuations cease at zero temperatures. However this does not

rule out quantum fluctutations. We also reiterate that the relation of the Hessian of the

effective potential with respect to the moduli and the moduli space metric [10] at the

attractor fixed point, clearly indicates that the signature of the Ruppeiner metric depends

on that of the moduli space metric.

The fact that the metric is non-degenerate is somewhat remarkable, as conventional

thermodynamics breaks down at extremality. However our results indicate that a limiting

characterisation of conventional thermodynamics at zero temperature should still hold at

extremality. This limiting thermodynamic description would correspond to the characteri-

sation of extremal black holes as degenerate quantum ground state exhibiting macroscopic

degeneracy. The non degenerate metric at extremality thus provides for the first time a

geometric realization of the thermodynamic state space of the extremal black hole at zero

temperature.

Note that the state space geometry is four dimensional as the thermodynamic entropy

is a function of four charges which serve as extensive variables. As mentioned earlier,

classical fluctuations are absent at zero temperatures although the curvature scalar should

still continue to indicate an underlying interacting statistical system given the fact that it

does so for non extremal black holes. The curvature scalar over the state space in this case

may be easily computed to be

R =
3

2π
√

N2N5N6Np

(3.3)

Thus, the curvature scalar is non zero, finite and regular everywhere although in the large

charge limit at which the entropy computation is valid the curvature is vanishingly small.

This should indicate an underlying non interacting and stable microscopic statistical basis.

The entropy considered here is the one arising from the usual two derivative terms in the

low energy effective supergravity action which is consistent with the area law. This is

modified by contributions from the higher derivative terms in the effective action, and con-

sequently modifies the equilibrium state space and the thermodynamic geometry including
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the curvature scalar. In what follows we will consider such modifications to the entropy of

the D = 10 four charged black holes and study the consequent thermodynamic geometries

of the equilibrium state space based on the modified entropy expression.

3.2 Four charged black holes in D = 10

The near horizon geometry of the D = 10 extremal charged black holes described by the

D2-D6-NS5-P system is AdS3 × S2 × S1 × T 4. The Wald formula in the framework of the

Sen entropy function with some modifications for the non standard near horizon geometry

leads to the entropy of the four charged extremal black hole in D = 10 at the two derivative

level as

S(N2, N5, N6, Np) = 2π
√

N2N5N6Np (3.4)

with the Nis defined as before. This is identical to the D = 4 case and follows the standard

area law and the universal expression for entropy of charged extremal black holes as the

square root of the product of the charges. The thermodynamic geometry of the equilibrium

state space arising from the entropy at the two derivative level is hence also identical to

the D = 4 case.

It is possible to consider the subleading corrections to the entropy of the four charged

extremal black hole in D = 10 following from the contribution of the higher derivative

terms in the low energy effective action. The Sen entropy function framework is applicable

for this exercise in spite of the non standard horizon geometry, with certain modifications.

The corrected entropy actually depends on a parameter which involves field redefinitions

for the higher derivative terms [24]. This essentially happens for the D2-D6-NS5-P system

because the supergravity configuration admits a near horizon geometry involving AdS3 and

S2 with different radii (unlike the D1-D5-P system considered later). The ambiguity due

to field redefinitions may be used to define a specific redefinition scheme in which only the

Weyl tensor part of the curvature occurs in the higher derivative terms. The α′ corrected

entropy for the four charged extremal black hole may now be computed using the Wald

formula and the Sen entropy function extremisation framework. An explicit computation

gives the corrected entropy as [24]

S(N2, N5, N6, Np) = 2π
√

N2N5N6Np − 2πC

√

Np

N2N6N
5/2
5

(3.5)

where C = 73315
222184

(

2R4

G4

N
α′R9

)3/2
γ where R4 and R9 refer to the radii of the circles over

which the D-2 brane is wrapped, G4
N is the 4-D Newton’s constant, and γ = 1

8ζ(3)α′3

The thermodynamic geometry of the equilibrium state space for the four charged extremal

black hole resulting from the corrected entropy may now be computed from the Hessian

matrix of the entropy with respect to the charges as:

ds2 =

(

π

2N2

√

N5N6Np

N2
+

4πC
√

Np

N3
2 N6N

5/2
5

)

dN2
2 −

(

π

√

N6Np

N2N5
− 10πC

√

Np

N2
2 N6N

7/2
5

)

dN2dN5

−
(

π

√

N5NP

N2N6
− 4πC

√

Np

N2
2 N2

6 N
5/2
5

)

dN2dN6−
(

π

√

N5N6

N2Np
+

πC
√

NpN2
2 N6N

5/2
5

)

dN2dNp
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+

(

π

2N5

√

N2N6Np

N5
+

35πC
√

Np

2N2N6N
9/2
5

)

dN2
5 −
(

π

√

N2Np

N5N6
− 10πC

√

Np

N2
2 N6N

7/2
5

)

dN5dN6

−
(

π

√

N2N6

N5Np
+

5πC
√

NpN2N6N
7/2
5

)

dN5dNp+

(

π

2N6

√

N2N5Np

N6
+

4πC
√

Np

N2N3
6 N

5/2
5

)

dN2
6

−
(

π

√

N2N5

N6Np
+

2πC
√

NpN2N
2
6 N

5/2
5

)

dN6dNp

+

(

π

2Np

√

N2N5N6

Np
− πC

2N
3/2
p N2N6N

5/2
5

)

dN2
p (3.6)

The determinant of the metric tensor is

g =
−π4

N6
2

√

NpN12
5 N6

6

(6C2
√

NpN
3
2 N6

5 N3
6 + 5CN4

2 N
17/2
5 N4

6

√

N2N5N6Np

+50CN2N
5/2
5 N6

√

N2N5N6Np + N6
2

√

NpN
12
5 N6

6 + 100C4
√

Np) (3.7)

and is non zero in the large charge limit indicating a non degenerate thermodynamic

geometry at extremality modified by the higher derivative contributions. Notice however

that the determinant is negative suggesting that the signature of the state space metric is

indefinite. As we have argued earlier this arises from the connection of the thermodynamic

geometry to the moduli space metric [10]. The scalar curvature of the thermodynamic

state space may now be computed in a straightforward fashion. The explicit expression for

the scalar curvature is long and is hence relegated to the appendix. The scalar curvature is

regular in the large charge limit in which the asymptotic expansion for the entropy is valid.

We provide a graphical analysis of the scalar curvature for different values of the charges in

figure 1. In the figure, we have shown the Ruppeiner scalar curvature of the D2-D6-NS5-P

system, as a function of N2 (X axis) and N5 (Y axis), both of which vary from 103 to

3 × 103. To illustrate the example, we have chosen the typical values N6 ≃ Np = 2 × 103.

The value of the constant C has been set to 10−5. We notice a small but positive scalar

curvature in the state space at these typical values of N2 and N5.

4. Black holes in the D1-D5-P system

In this section we explore the thermodynamic geometry of 3 charged extremal black holes in

Type IIB string theory arising from a microscopic configuration of N1 D1 branes wrapped

along some compact direction y with radius R, N5 D5 branes wrapped along y and a four

torus T 4, and p = Np/R units of KK momentum along the y direction. The corresponding

five dimensional extremal black holes carry both electric and magnetic charges arising

from the D1 and D5 branes respectively. In D = 10 the near horizon geometry of the

configuration is M3 ×S3×T 4 where M3 is a boosted AdS3 geometry. The ten dimensional

metric may be reduced over S1 × T 4 and the resulting D = 5 charged extremal black

hole involves a more tractable near horizon geometry of AdS2 × S3. The near horizon

geometries imply that the standard entropy function method may be applied to compute

– 11 –
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Figure 1: Ruppeiner curvature for the D2-D6-NS5-P System as a function of N2 (X-axis) and N5

(Y-axis).

the entropy of these extremal charged black holes at the two derivative level. Higher

derivative contributions are however tricky as the non standard near horizon geometry for

the corresponding configuration in D = 10 complicates the application of the Wald formula.

Despite this the α3′R4 corrections arising from string tree level scattering amplitudes have

been incorporated to compute the subleading corrections to the entropy of extremal charged

black holes in such D1-D5-P systems in D = 10 [25].

We now explore the thermodynamic geometry of these D1-D5-P extremal charged black

holes in D = 5 and D = 10. We further elucidate the modification of the thermodynamic

geometry involving the higher order α3′R4 corrections in the D = 10 type IIB supergravity

effective action, and their subleading contributions to the entropy

4.1 D1-D5-P black holes in D = 5

The D = 10 IIB supergravity may be compactified to D = 5 on S1 ×T 4. The near horizon

limit of the metric is AdS2 ×S3 allowing the application of the entropy function formalism

to compute the Bekenstein-Hawking entropy as

SBH = 2π
√

N1N5Np. (4.1)

The result coincides with that obtained by direct computation of the horizon area verifying

the usual area law at the two derivative level.

The metric of the thermodynamic state space in the entropy representation may now be

obtained as before from the Hessian matrix of the entropy with respect to all the extensive

thermodynamic variables which in this case are just the D1, D5 and P charges. Explicitly

– 12 –
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the metric is given as

ds2 =
π

2

(

√

N5Np

N1

dN2
1

N1
+

√

N1Np

N5

dN2
5

N5
+

√

N1N5

Np

dN2
p

Np

)

−π

(

√

Np

N1N5
dN1dN5 +

√

N5

N1Np
dN1dNp +

√

N1

N5Np
dN5dNp

)

(4.2)

We observe that as in the previous example the Ruppeiner metric is non degenerate

and regular everywhere even at extremality. The determinant of the metric tensor is

g = − π3

2
√

N1N5Np

(4.3)

and is non zero for non zero charges.2 This lends credence to the contention of a limiting

characterisation of conventional thermodynamics at zero temperature, in this case. The

Ruppeiner metric at extremality obtained by us thus characterises a geometric realization

of the corresponding equilibrium thermodynamic state space at extremality.

The scalar curvature corresponding to the geometry of the thermodynamic state space

may now be determined to be

R =
3

4π
√

N1N5Np

(4.4)

We observe that the scalar curvature is non zero, positive and regular everywhere in

the large charge small curvature limit at which the entropy expression is valid. The state

space curvature is vanishingly small in the large charge limit. As mentioned in connection

with the previous example of the four charged extremal black holes in Type II supergravity,

this fact seems to be universal and is related to the typical form for the Ruppeiner geometry

as the Hessian matrix of the entropy. The usual connection of Ruppeiner geometry with

thermodynamic fluctuation theory needs to be modified in connection with the application

to black holes [9]. However the standard interpretation of scalar curvature of the state space

geometry to describe interactions in the underlying statistical system should continue to

hold for non extremal black holes. In particular this should also hold at extremality and

hence the vanishingly small scalar curvature for the state space of D1-D5-P system in the

large charge limit should indicate an underlying non interacting and stable statistical basis.

4.2 D1-D5-P black holes in D = 10

The black hole solution corresponding to a microscopic D1-D5-P brane system maybe

described by a modified non standard near horizon AdS3 × S3 × T 4 geometry. For this

case, the horizon at r = 0 has a geometry of S1×S3×T 4. This complicates the application

of the Sen entropy function approach to compute the black hole entropy. The relations

between the number of D-branes with constants of integration and the ADM momentum

in y needs to be computed again due to the modified near horizon geometry. Furthermore

2As in the previous subsection, the metric is not positive definite, but our previous argument will still

hold in this case.
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the Wald formula for this modified background needs to be recomputed and is involved

due to the presence of an off diagonal term in the metric describing the modified near

horizon geometry. Fortunately the computation for the Wald formula may be simplified

by using certain properties for the Riemann tensor of the modified near horizon geometry.

This enables the application of the Sen entropy function method and the entropy may be

computed to leading order or two derivative level to be [25]

S(N1, N5, NP ) = 2π
√

N1N5NP (4.5)

which is exactly the same as in the D = 5 case. Hence the Ruppeiner geometry of the

thermodynamic state space for the D = 10 D1-D5-P black hole is identical to the D =

5 case. The scalar curvature of the state space is also identical and exactly the same

interpretations should continue to hold as in the D = 5 case.

As in the instance of the D2-D6-NS5 brane system, the entropy expression for the

system in question would also be modified by the subleading contributions from the higher

derivative terms in the low energy Type IIB supergravity action. Following exactly the

same approach, at the next leading order in α′ (with spacetime R4 corrections) arising out

of the string three loop scattering amplitudes, the entropy of the extremal black hole is

given as

SBH = 2π
√

N1N5Np

[

1 +
b

(N1N5)
3/2

]

(4.6)

where b = 3γ
[

2π3V4

16πG10

]3/2
with G10 being the 10 dimensional Newton’s coupling constant,

V4 the volume of the T 4 and γ = 1
8ζ(3)α′3.

The Ruppeiner metric may now be computed as the Hessian matrix of the corrected

entropy expression in eq. (4.6) to be,

ds2 =

[

π

2N1

√

N5Np

N1

(

1 +
b

(N1N5)3/2

)

− 9πb
√

Np

2N3
1 N5

]

dN2
1

−
[

πNp
√

N1N5Np

(

1 +
b

(N1N5)3/2

)

+
3πb
√

Np

(N1N5)2

]

dN1dN5

−
[

πN5
√

N1N5Np

(

1 +
b

(N1N5)3/2

)

− 3πb
√

NpN2
1 N5

]

dN1dNp

+

[

π

2N5

√

N1Np

N5

(

1 +
b

(N1N5)3/2

)

− 9πb
√

Np

2N1N3
5

]

dN2
5

−
[

πN1
√

N1N5Np

(

1 +
b

(N1N5)3/2

)

− 3πb
√

NpN1N2
5

]

dN5dNp

+
π

2Np

√

N1N5

Np

(

1 +
b

(N1N5)3/2

)

dN2
p (4.7)

The determinant of the metric tensor is given as

g = − π3

2N5
1 N5

5

√

Np

[

(N1N5)
9/2 + 6b (N1N5)

3/2 − 20b3
]

(4.8)
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Figure 2: Ruppeiner curvature for the D1-D5-P system with higher derivative corrections, as a

function of N1 and N5.

The determinant is non zero for non zero charges and as before we obtain a non degenerate

thermodynamic geometry of the state space of the three charged extremal black hole at

extremality. Note that as in the other examples the determinant is negative suggesting an

indefinite signature of the Riemannian line element. Our earlier arguments that this arises

from the connection with the signtaure of the moduli space metric remains valid.

The scalar curvature of the state space may now be computed using the Ruppeiner

metric based on the Hessian matrix of the entropy corrected by higher derivative contribu-

tions. The curvature is regular everywhere although vansisgingly small in the large charge

limit indicating again a stable thermodynamic system and underlying non interacting sta-

tistical basis. The exact expression for the scalar curvature is involved and we relegate it to

the appendix. We trace the behavior of the scalar curvature graphically in figure 2, where

we have plotted the Ruppeiner curvature as a function of N1 and N5, We have set the

typical values Np = 103 and b = 10−5. Of course, the scalar curvature is identical to that

of the leading order case for b = 0 for which the higher derivative contributions are absent.

5. Two charged small black holes

In this section we study the third example of Ruppeiner geometry of the thermodynamic

state space of extremal two charged small black holes in string theory. These black holes are

characterised by a vanishing horizon area and hence zero entropy at the two derivative level.

However, higher derivative contributions renders this entropy to be non zero at the next to

leading orders and also provides a finite non zero horizon area. Hence the naked singularity

at the two derivative level is cloaked by a horizon arising from the higher derivative terms

in the low energy effective supergravity action [3]. This renders the macroscopic description

of small black holes somewhat complicated as the higher derivative terms are now crucial

for the formation of a horizon. The microscopic statistical description of small black holes

are however simpler as it is based on just the fundamental string states.

– 15 –
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5.1 Macroscopic and microscopic description of small black holes

In Type IIA string theory compactified on K3 × T 2, small black holes are charged objects

in a suitably chosen duality basis. The macroscopic entropy in the two charged example

of small black holes is

Smacro = 4π
√

|q0p1| (5.1)

where q0 and p1 are the electric and magnetic charges respectively. In the dual description,

this small black hole is a charged black hole with charges (q0, p
1) of N = 4 heterotic string

theory compactified on the six torus. It turns out that in this case the radius of the horizon

is of the string length ls and the small black hole is at the correspondence point where it

may be described by a perturbative heterotic string state with the appropriate charge

configuration.3 It is possible to compute the degeneracy of these string states as the black

hole is a 1
2 BPS configuration and hence corresponds to a short multiplet of the N = 4

supersymmetry. The degeneracy may be computed by using the Rademacher formula and

in the limit of large charges yields the microscopic entropy as

Smicro = ln d(q, p) ≃ 4π
√

|qp| − 27/4 ln |qp| + O

(

1
√

|qp|

)

(5.2)

∼ 4π(s + s)Hor. − 27/2 ln (s + s)Hor (5.3)

where s is the heterotic axion-dilaton field.

The macroscopic entropy matches the microscopic one at leading orders but fails at

subleading orders where the microscopic entropy expression involves logarithmic correc-

tions. So it follows that the macroscopic entropy also must incorporate such corrections.

It turns out that non holomorphic corrections are required to be incorporated to Smacro as

the microscopic entropy expression involves both s and its complex conjugate s.

The toroidally compactified heterotic string theory posses a duality invariant spec-

trum but the entropy expression involving the generalized holomorphic prepotential of the

N = 2 Lagrangian applied to toroidally compactified Type II string theory is not duality

invariant. The duality invariance requires incorporation of non holomorphic terms to the

generalized prepotential. After incorporating the same, in both the attractor equations and

the macroscopic entropy, an S duality invariant expression is obtained which also incorpo-

rates a logarithmic correction term −12 ln(s + s)Hor. Thus, the mismatch between Smacro

and Smicro persists even with the incorporation of the non holomorphic corrections. It

could be shown later [16] that a computation in the heterotic description involving a grand

canonical ensemble shows an exact match between the microscopic and the macroscopic

entropy, although a Type II description still seems to be problematic.

5.2 Thermodynamic geometry of small black holes

The thermodynamic geometry of the equilibrium state space of two charged small black

holes in Type IIA string theory may now be constructed based on the expressions for the

microscopic and the macroscopic entropy. The horizon area for small black holes vanishes

3We will use the notation q0 = q and p
1 = p in what follows
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at the two derivative level and hence the leading order contribution to the macroscopic

entropy is zero. The first contribution to the macroscopic entropy hence arises at the

subleading order from the higher derivative contributions as

S1 = 4π
√

qp (5.4)

where q and p refer to the non-zero electric and magnetic charge of the black hole. Now, the

Ruppeiner metric may be computed from the Hessian matrix of the entropy with respect

to the charges. The equilibrium thermodynamic state space in this case is two dimensional

as we have chosen a two charge configuration. Explicitly the metric is given as

ds2 =
π

q

√

p

q
dq2 − π√

qp
dqdp +

π

p

√

q

p
dp2 (5.5)

It can be seen that the Ruppeiner metric based on the macroscopic entropy at the first

subleading order, is degenerate and the determinant of the metric g = 0. Hence there is

no viable thermodynamic geometry at this order for the two charged extremal small black

hole in question.

Surprisingly the situation changes when we consider the duality invariant macroscopic

entropy corrected by the non holomorphic contributions from the generalized prepotential.

The macroscopic entropy in this case is given as

S(q, p) = 4π
√

qp − 6 ln(qp) (5.6)

and the Ruppeiner metric of the state space may be easily computed from Hessian matrix

of the entropy as

ds2 =

(

π

q

√

p

q
− 6

q2

)

dq2 − 2π√
qp

dqdp +

(

π

p

√

q

p
− 6

p2

)

dp2 (5.7)

The determinant of the metric is g = − 12
q2p2 (π

√
qp−3). Hence, the thermodynamic geome-

try of the state space based on the above metric is non degenerate in the large charge limit

under consideration as g 6= 0 in this limit. The determinant is negative according to the

arguments presented for the earlier examples. The fact that a viable and non degenerate

thermodynamic metric emerges only from a duality invariant entropy corrected by the non

holomorphic contributions suggests a connection between duality invariant entropy and

thermodynamic geometry at extremality. The theoretical issues of this connection is im-

portant to elucidate and it is expected that investigations of the state space geometry away

from the attractor fixed point and relation to the moduli space geometry should clarify this

connection further. We leave this issue for the future.

It is now straightforward to compute the scalar curvature of the state space to be

R =
π
√

qp

24
(

π
√

qp − 3
)3

(

π2qp − 9π
√

qp + 18
)

(5.8)

In the large charge limit for which the asymptotic expansion for the macroscopic entropy

is valid, the scalar curvature is regular but vanishingly small.
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Although typically thermodynamic geometry, particularly Ruppeiner geometry, is based

on the macroscopic thermodynamic entropy an implicit assumption of a statistical basis in

the framework of a canonical ensemble is involved. Given the mismatch between the duality

invariant macroscopic entropy corrected by non holomorphic modifications of the general-

ized prepotential and the microscopic entropy computed in the dual heterotic picture from

degeneracy of appropriate BPS states, it is instructive to explore also the thermodynamic

geometry based on the microscopic entropy expression. Although this is obtained from a

mixed canonical-microcanonical ensemble in the OSV picture involving a topological string

framework, a comparison of the scalar curvatures of the thermodynamic geometry based

on the two different entropy expressions may lead to certain physical insight.

The microscopic entropy of the two charged small black hole from the degeneracy of

perturbative BPS heterotic string states is given as

S(q, p) = 4π
√

qp − 27

4
ln (qp) (5.9)

The Ruppeiner metric for the equilibrium state space of the system based on this entropy

is given by the Hessian matrix of the entropy with respect to the charges to be

ds2 =

(

π

q

√

p

q
− 27

4q2

)

dq2 − 2π√
qp

dqdp +

(

π

p

√

q

p
− 27

4p2

)

dp2 (5.10)

The determinant of the metric tensor is g = − 27
16q2p2 (8π

√
qp − 27). Notice that once

again the determinant is non zero and negative for the large charge limit being considered

here and we obtain a non degenerate Ruppeiner geometry even at extremality. The scalar

curvature of the state space in the microscopic picture may now easily computed to be

R =
16π

√
qp

27
(

8π
√

qp − 27
)3

(

32π2qp − 324π
√

qp + 729
)

(5.11)

The scalar curvature is finite and regular in the large charge limit although vanishingly

small. This indicates as usual a stable thermodynamic system with a non interacting statis-

tical basis. Although the two scalar curvatures are different in their exact expressions their

overall behavior is similar indicating that the microscopic and the macroscopic pictures are

in close conformity.

5.3 Thermodynamic geometry and higher α′ corrections to small black holes

It is possible to incorporate further higher derivative corrections to the microscopic entropy

for the two charged small black holes in Type IIA string theory compactified on K3 × T 2.

It turns out that the first subleading order and the logarithmic corrections are identical

to the ones considered before and to the other subleading orders we have the corrected

microscopic entropy as a series

Smicro = 4π
√

qp − 27

4
ln qp +

15

2
ln 2 − 675

32π
√

qp
− 6075

2048π2qp
+ · · · (5.12)
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Figure 3: Ruppeiner curvature for the small black hole with 1
√

qp
corrections, as a function of q

and p.

It is now possible to study the modification to the thermodynamic geometry arising from

the effect of the 1√
qp term through the Hessian matrix of the entropy with respect to the

charges. This provides the corrected Ruppeiner metric as

ds2 =

(

π

q

√

p

q
− 27

4q2
+

2025

128πq2√qp

)

dq2 − 2

(

π√
qp

− 675

128π(qp)3/2

)

dqdp

+

(

π

p

√

q

p
− 27

4p2
+

2025

128πp2√qp

)

dp2 (5.13)

The determinant of the metric tensor is

g = − 27

2048π2q3p3
(1024π3qp

√
qp − 6656π2qp + 16200π

√
qp − 16875) (5.14)

and is non zero in the large charge limit and we have non degenerate thermodynamic

geometry at extremality. Notice that the determinant is negative suggesting an indefinite

signature for the Riemannian line element in the state space and our earlier arguments

continue to remain valid. The scalar curvature of the state space may now be computed

from the Ruppeiner metric. The exact expression for the scalar curvature is lengthy, and

we present it in the appendix. In figure 3, we present the behavior of the scalar curvature

in the large charge limit graphically, as a function of q and p.

It is instructive further to examine whether the other subleading terms significantly

modify the thermodynamic geometry of the equilibrium state space. To this end we consider

next the effect of the 1
qp contributions in eq. (5.12) to the entropy on the state space

geometry and the scalar curvature. The Ruppeiner metric, in this case, is given by

ds2 =

(

π

q

√

p

q
− 27

4q2
+

2025

128πq2√qp
− 6075

1024π2q3p

)

dq2

−2

(

π√
qp

− 675

128π(qp)3/2
− 6075

2048π2q2p2

)

dqdp

+

(

π

p

√

q

p
− 27

4p2
+

2025

128πp2√qp
+

6075

1024π2qp3

)

dp2 (5.15)
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Figure 4: Ruppeiner curvature with 1

qp
corrections, as a function of q and p.

The determinant of the metric is given as

g = − 27

4194304π4q4p4

(

2097152π5p2q2√qp + 30412800π3pq
√

qp

− 13631488π4q2p2 − 22118400π2pq − 24300000π
√

qp − 4100625
)

(5.16)

and is nonzero in the large charge limit and hence defines a non degenerate thermody-

namic geometry at extremality. It is now possible to compute the thermodynamic scalar

curvature and compare with the scalar curvature of the state space due to corrections upto

order 1√
qp . The exact expression is provided in the appendix. In figure 4, we present a

graphical analysis of the same. The curvature is regular in the large charge limit but van-

ishingly small just as for the other examples that we have considered. It is observed that

the modification to the scalar curvature due to the inclusion of the 1
qp correction to the

entropy is marginal.

5.4 String loop corrections and exact entropy expression

Apart from higher derivative terms in the low energy effective supergravity action there

are higher derivative contributions to the macroscopic entropy also from purely quantum

corrections arising from perturbative string loop corrections and non perturbative contribu-

tions. Hence at the R4 level it is necessary to also consider
√

q
p contributions to the macro-

scopic entropy arising from string loop corrections. For the two charged small black hole it

is possible to establish the string loop corrected entropy expression from application of the

Sen entropy function formalism and scaling arguments. An explicit analysis leads to [27]

SBH =
√

aqp + bq (5.17)

with q ≫ p ≫ 1, where b is a constant depending on the loop corrections and a is an

arbitrary constant. Invoking T duality invariance modifies the entropy expression to

SBH =
√

aqp + b (q + p) (5.18)
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A modified microscopic state counting for the two charged small black hole from the

degeneracy of BPS states in the dual heterotic string picture leads to the microscopic

entropy Smicro =
√

16qp + 2
3q which is consistent with the T duality invariant expression

for the macroscopic entropy. A similar expression from microscopic state counting also

arises from D0D4 black holes in Type IIA string theory compactified on K3 × T 2. These

possess near horizon geometry of AdS2×S2×CY3 where CY3 ≃ K3×T 2. Quite surprisingly

Linde and Kallosh [28] has proposed an exact expression for the entropy from quantum

information theory as

SBH ∼
√

aqp + b(q + p) (5.19)

which is also consistent with the T duality invariant expression.

It is instructive to study the thermodynamic geometry of the equilibrium state space

of the two charged small black holes, implied by the exact entropy expressions. The Rup-

peiner metric for the state space from the Hessian matrix of the exact entropy expression

is given as;

ds2 =
(ap + b)2

4 (aqp + b(p + q))3/2
dq2 +

(aq + b)2

4 (aqp + b(p + q))3/2
dp2

+

(

(aq + b)(ap + b)

2 (aqp + b(p + q))3/2
− a

(aqp + b(p + q))1/2

)

dqdp (5.20)

The determinant of the metric is g = ab2

4(aqp+b(p+q))2
and is non zero everywhere and hence

we have a non degenerate thermodynamic geometry of the equilibrium state space of the

two charged extremal small black hole. The scalar curvature of the state space may now

be computed from the Ruppeiner metric to be

R = −a2qp + abq + abp + b2

b2
√

aqp + bq + bp
. (5.21)

Observe that the scalar curvature is regular but vanishingly small once again. As usual

this indicates a stable thermodynamic system with a non interacting microscopic statistical

basis. The scalar curvature of the state space geometry following from the exact entropy

expression is negative.

6. Summary and conclusions

In this paper, we have applied, for the first time, the formalism of thermodynamic geome-

tries to degenerate quantum ground states at zero temperatures, exemplified by extremal

black holes in Type II string theories. Although alluded to earlier in [10] there was no

conclusive computation for equlibrium state space geometry of extreml black holes. Such

systems exhibiting macroscopic degeneracies are well known in the physics of condensed

matter like spin glasses. As stated in the paper, the non zero entropy of extremal black

holes suggests a limiting characterisation of conventional thermodynamics to degenerate

quantum ground states at zero temperatures. Our construction is a geometrical realization
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of the equilibrium thermodynamic state space of such systems typified by extremal black

holes which exhibit macroscopic degeneracy at zero temperatures.

It is well known that black hole solutions in N ≥ 2 supergravity involves moduli spaces

with special Kähler geometry. In particular, they exhibit an attractor phenomena as a

consequence of which moduli fields flow under radial evolution to fixed values in terms of

the charges at the horizon which is a fixed point of the flow. The entropy is thus a function

of the charges only, and independent of the asymptotic values of the moduli ensuring

the validity of an underlying microscopic statistical basis in terms of fundamental string

states or D-brane systems. The present investigation serves as a prelude to explore the

thermodynamics of extremal black holes in Type II string theories, away from the attractor

fixed point and a consequent geometrical understanding of the attractor mechanism and

the attractor fixed point as possible restrictions in the equilibrium state space extended by

the moduli variables.

Quite obviously our construction is a radical departure from the original domain of

application of the formalism of thermodynamic geometries to conventional thermodynamic

systems at finite non-zero temperatures. Hence certain modifications of the scope of the

formalism was naturally expected. In particular the absence of classical fluctuations of

a thermal origin at zero temperatures rules out the connection between the probability

distribution of classical fluctuations and a positive definite invariant Riemannian form over

the equilibrium state space. In fact our construction clearly illustrates that although a non

degenerate thermodynamic geometry emerges, the signature of the invariant Riemannian

form is indefinite and may also be sensitive to the higher derivative corrections to the

macroscopic entropy. This follows clearly from the fact that the Hessian of the ADM

mass w.r.t. the scalar moduli is proportional to the moduli space metric at the attractor

fixed point with the BPS mass as the proportionality constant. For the extremal black

holes at the two derivative level the BPS mass is equal to the macroscopic entropy. Thus

inverting this relation, the sign of the Hessian of the entropy w.r.t. the conserved charges

clearly depends on the signature of the moduli space metric. Higher derivative corrections

however may possibly modify this relation in which the signature of the Riemanian line

element in the state space of extremal black holes would be sensitive to the higher derivative

contributions to the entropy. Given the connection between the scalar curvature and an

interacting statistical basis for non extremal black holes, the same should remain valid also

for extremal black holes. The divergences of the scalar curvature in the case of extremal

black holes may then possibly describe quantum phase transitions between distinct vacua

in the moduli space. The attractor mechanism and in particular the study of Ferrara et

al. [10] suggests a role of the moduli space in determining the signature of the invariant

interval over the state space and curvature singularities with phase transitions amongst

vacua in the moduli space. This is an ongoing issue under our investigation and would be

reported in the future.

In the present investigation, we have studied three diverse examples of extremal charged

black hole solutions of Type II supergravity which arise as low energy limits of string com-

pactifications on Calabi-Yau manifolds. These are four charged black holes in D = 4 and

D = 10 described by D2-D6-NS5-P brane system, three charged black holes in D = 5 and
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D = 10 described by D1-D5-P system and two charged small black holes in Type II string

theories. Quite remarkably, we have found that in spite of conventional thermodynamic no-

tions being invalid at extremality, the equilibrium state space in all these examples admits

of a non degenerate Riemannian geometric structure. Although the signature of the invari-

ant interval over the state space is no more positive definite and as argued depends on the

moduli space metric and the higher derivative constributions. As discussed earlier, this is

not an issue since classical fluctuations are necessarily absent at zero temperatures although

quantum fluctuations may be present. We have further computed the scalar curvatures in

all these cases and it was found that the scalar curvatures were regular everywhere but

vanishingly small in the limit of large charges in which the asymptotic expressions for the

entropy were valid. This indicated a non interacting microscopic statistical basis. The

absence of divergences in the scalar curvatures implied that the solution were thermody-

namically stable and no phase transitions were evident. The modification of the geometry

and the scalar curvature due to higher derivative contributions to the macroscopic entropy

were also explored. We found that the scalar curvatures were only marginally sensitive to

the higher derivative modifications of the entropy. One interesting aspect of our study was

that for the case of the two charged small black holes a non degenerate thermodynamic

geometry required the inclusion of non holomorphic terms which renders the entropy to be

duality invariant. A study of the state space geometry away from the attractor fixed point

may possibly clarify this remarkable connection. This is under investigation and we hope

to report on this issue in the near future. Furthermore, we also studied the thermodynamic

state space based on an exact entropy expression arsing from a quantum information theo-

retic perspective. The thermodynamic geometry based on this entropy was also found to be

non degenerate but now with a positive definite metric. The scalar curvature was regular

but small in the limit of large charges and negative. We mention in this connection that

we have also investigated two other examples, that of a charged extremal dyonic black hole

and the case of a rotating attractor black hole. We found that at the two derivative level

the corresponding state space geometries are either degenerate or the Ruppeiner metric

is identically zero. For the rotating black hole the extremal limit is also a Davies phase

transition point and the zero determinant simply signifies this. Quite obviously from the

examples we have studied it seems that higher derivative contributions would possibly also

lead to non degenerate thermodynamic geometries in these cases. As we have mentioned

our construction is a prelude to studying the state space geometry away from the attractor

fixed point where the state space is now extended by the scalar moduli as thermodynamic

variables. Such a study is expected to provide an understanding of the attractor mechanism

in relation to thermodynamic state space geometries and a geometrical comprehension of

the attractor fixed point. We hope to report on this exciting issue in the future.
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A. Explicit forms for some state space scalar curvatures

In this appendix we provide the explicit forms of the various scalar curvatures for the

Ruppeiner geometries of the thermodynamic state spaces of the examples of extremal

charged black holes that we have considered, including higher derivative corrections.

For the D = 10 black holes described by the D2 − D6 − NS5 − P systems the scalar

curvature with higher derivative corrections is

R =
3N2N6

√

NpN
5/2
5

4π
(6C2

√

NpN
3
2 N6

5 N3
6 + 5CN4

2 N
17/2
5 N4

6

√

N2N5N6Np

+50CN2N
5/2
5 N6

√

N2N5N6Np + N6
2

√

NpN
12
5 N6

6 + 100C4
√

Np)
−3

(17C2N13
2 N13

6 N
53/2
5

√

N2N5N6Np + 3837C4N10
2 N10

6 N
41/2
5

√

N2N5N6Np

+565000C9
√

NpN
3
2 N6

5 N3
6 − 620000C10N2N

5/2
5 N6

√

N2N5N6Np

−114C3
√

NpN
12
2 N24

5 N12
6 + 26C

√

NpN
15
2 N30

5 N15
6

+47472C6N7
2 N

29/2
5 N7

6

√

N2N5N6Np − 800000C11
√

Np

+604500C8N4
2 N

17/2
5 N4

6

√

N2N5N6Np + 2N16
2 N

65/2
5 N16

6

√

N2N5N6Np

+20280C
√

NpN
9
2 N18

5 N9
6 + 178980C7

√

NpN
6
2 N12

5 N6
6 ) (A.1)

where the constant C has been defined in the main text.

For the D = 10 extremal black holes described by D1-D5-P brane system we have the

scalar curvature of the state space corrected by higher derivative R4 contributions arising

from the string three loop scattering amplitude is given as

R =
3

4

√

N1N5Np

√

N1N5(
9N10

1 N10
5 b

√
N1N5 − 256N7

1 N7
5 b3

√
N1N5

πNp(6N1N5

√
N1N5b2 − 20b3 + N4

1 N4
5

√
N1N5)3

−−1920N1N5b
7
√

N1N5 + 1700N4
1 N4

5 b5
√

N1N5 + N12
1 N12

5

πNp(6N1N5

√
N1N5b2 − 20b3 + N4

1 N4
5

√
N1N5)3

+
6520N3

1 N3
5 b6 − 1600b8 − 48N6

1 N6
5 b4 + 8N9

1 N9
5 b2

πNp(6N1N5

√
N1N5b2 − 20b3 + N4

1 N4
5

√
N1N5)3

) (A.2)

Next, we provide the Ruppeiner scalar curvature of the state space geometry based

on the microscopic entropy expression for two charged small black holes in Type II string

theory compactified on K3 × T 2 corrected by 1√
qp contributions:

R =
1

8192n2w2√qpπ
[(−265420800π3qp

√
qp − 29360128π5q2p2√qp

+5948640000π
√

qp − 7688671875 + 2097152q3p3π6 + 160350208q2p2π4

−1149033600qpπ2)(1024π3qp
√

qp − 6656qpπ2 + 16200π
√

qp − 16875)−3]

Finally, the Ruppeiner curvature for the two charged small black hole, with the 1
qp

corrections is
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R =
65536π3qp

√
qp

27
(2097152π5p2q2√qp + 30412800π3pq

√
qp

−13631488π4q2p2 − 22118400π2pq − 24300000π
√

qp − 4100625)−3

(22823730196875000π
√

qp + 465892154818560000π5p2q2√qp

−201080268288000000π3pq
√

qp − 192782236070707200π7q3p3√qp

+3783403212890625 − 95786360635392000π9q4p4√qp

−2744381022928896π11q5p5√qp − 177903493447680000π6q3p3

+22282702648508416π10q5p5 + 218241931463884800π8q4p4

+140737488355328π12q6p6 − 9486221850000000π2pq

−42628654080000000π4q2p2) (A.3)
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